Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws
نویسنده
چکیده
We study several regularizing methods, stationary phase or averaging lemmas for instance. Depending on the regularity assumptions that are made, we show that they can either be derived one from the other or that they lead to different results. Those are applied to Scalar Conservation Laws to precise and better explain the regularity of their solutions.
منابع مشابه
A total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملRegularity in kinetic formulations via averaging lemmas
We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best k...
متن کاملLong-time Behavior, Invariant Measures and Regularizing Effects for Stochastic Scalar Conservation Laws
We study the long-time behavior and regularity of the pathwise entropy solutions to stochastic scalar conservation laws with random in time spatially homogeneous fluxes and periodic initial data. We prove that the solutions converge to their spatial average, which is the unique invariant measure of the associated random dynamical system, and provide a rate of convergence, the latter being new e...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملRegularity through Approximation for Scalar Conservation Laws∗
In this paper it is shown that recent approximation results for scalar conservation laws in one space dimension imply that solutions of these equations with smooth, convex fluxes have more regularity than previously believed. Regularity is measured in spaces determined by quasinorms related to the solution’s approximation properties in L1(R) by discontinuous, piecewise linear functions. Using a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009